Neural Network Reveals Gravitational Coupling of Endemic Measles Dynamics
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Measles is an important infectious disease system,

both for its immediate relevance to public health

and for the study of non-linear spatio-temporal
disease dynamics. Traditional mechanistic mod-
els are often unable to fully capture the compli-
cated nonlinear spatio-temporal dynamics inher-
ent in measles transmission. Here we develop a
high-dimensional neural-network-based model to

forecast endemic measles outbreaks, with the aim

of providing both prediction accuracy and inter- T e T

pretability and inference of mechanistic drivers. Fig. 1. Map of England and Wales, with cities/towns colored by log
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measles cases on first biweek of 1961.

We demonstrate forecast accuracy for high and low population cities/towns for time steps ahead
ranging from 1 to 52 biweeks, and employ feature importance methods to demonstrate the learning
of coupled gravity dynamics.

Data & Methods

Our data consists of biweekly measles
case counts across 1,452 cities/towns
in the United Kingdom during the pre-
vaccination period from 1951 to 1964.
The forecast goal was to predict k-step
ahead case counts for all cities/towns,
for k € {1,2,...,52} using a range of
features. For each k-step ahead we fit
a separate feed-forward neural network
with 2 hidden layers of dimension 962,
linear input/output layers, and Relu ac-
tivation functions (Figure 2).

Fig. 2: Feed-forward neural network architecture.

Features include lagged case counts, high population city lagged case counts and distances (defined
as a population greater than 300k, of which there are seven), nearest ten city lagged case counts
and distances, births, population. Lagged features range from ¢t — k to t — 130, where t is the target
time step. Birth and population features are from the nearest time step less than or equal to t — &
while still sharing the same biweek of the year. Neural networks are fit using the Adam optimizer
with MSE loss, and are trained on 70% of the data (cases ranging from 1951 to 1960), with 30%
of the data (cases ranging from 1960 to 1964) held out for testing.

We compare the neural networks to TSIR (time-series susceptible-infected-recovered) models, a pop-
ular semi-mechanistic technique that has been shown to handle the dynamics of measles outbreaks
well [1]. TSIR provides a computationally inexpensive and highly tractable alternative to the classic
SIR compartmental model, and is described by the following equations:
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Performance

The neural network generally performed better than TSIR for all k-steps ahead, across different
population sizes. While the neural network performed well for long forecasts in high-population
cities (Figure 3), the level of improvement is most pronounced for small k-steps ahead in low
population cities/towns that have sporadic and brief outbreaks (Figures 4,5).
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Fig. 3: b2-step ahead test set neural network forecasts, TSIR forecasts, and true case values for London.
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Fig. 4: Within-city neural network RMSE over TSIR RMSE, colored by log(population), facetted by k-step ahead forecast.

1.0 1

0.8 -

0.6 -

0.4-
(- 0.2 1
O
T 0.0 Log(Population)
()
S 02+ 14
@)
X 12
S k = 20
£ 1.0 10
pa
< 0.8- 8
-}
I .
2 06
0.4-
0.2- g

O
o
1

O
N
1

A~ O 0

o
TSIR Correlation

S © © o o o
\V)

Fig. 5: Within-city neural network prediction correlation with true cases over TSIR prediction correlation with true cases, colored by

log(population), facetted by k-step ahead forecast.
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We use the SHAP (SHapley Additive
exPlanations) method [2] to assess fea-
ture importance. SHAP values are cal-
culated by selected random permuta-
tions of feature groups, calculating the
change in model output as each feature
group is added back to a baseline value,
and finally averaging across all permu-
tations.
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Fig. 6: Mean Absolute SHAP values by feature group.

We choose to group features by lag type, e.g. all lagged nearest-city cases are grouped and permuted
together. The mean absolute SHAP value for each feature group suggests that the most important
features are the lagged case counts of high-population cities, followed by the lagged case counts of
nearby cities/towns, and then the lagged case counts of the target city (Figure 6).

Gravity Dynamics

Previous work has demonstrated the presence of gravity dynamics in measles outbreaks, where
outbreaks in low population cities/towns are driven by outbreaks in nearby high population cities
[3]. To assess if the neural network is learning high/low population epidemic coupling, we first
calculate the relative absolute SHAP value for each feature group at each observation. We then
calculate the within-city mean value of the relative absolute SHAP values. This provides a measure
of the relative importance of each feature group for each city. Plotting these against the log of
the population of the target city, we see that the lagged case counts of high population cities are
relatively more important for low population cities/towns, which suggests that our neural-network is
able to reveal gravity-like core-satellite dynamics [4] present in the endemic measles spatio-temporal
dynamics (Figure 7).
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Fig. 7: With-city mean relative absolute SHAP values over log(population) for each feature group, with LOESS fits.

Future Directions

e Extend analyses to more chaotic post-vaccination period.

e Explore joint approaches combining mechanistic models with neural networks, such as Physics-
Informed Neural Networks (PINNs) and Neural-ODEs.

Acknowledgements & References

This work is supported by the Dean’s Pilot and Innovation Awards provided by the Dean’s office at
Rollins School of Public Health at Emory University.

[1] Barbel F. Finkenstadt and Bryan T. Grenfell. “Time Series Modelling of Childhood Diseases: A Dynamical Systems Approach”. In: Journal
of the Royal Statistical Society. Series C (Applied Statistics) 49.2 (2000), pp. 187-205.

[2] Scott M. Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predictions”. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. NIPS'17. Long Beach, California, USA: Curran Associates Inc., 2017, pp. 4768-4777.

[3] Yingcun Xia et al. "Measles Metapopulation Dynamics: A Gravity Model for Epidemiological Coupling and Dynamics”. In: The American
Naturalist 164.2 (2004), pp. 267-281.

[4] Max Lau et al. "A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination”. In:
Nature Ecology & Evolution 4 (July 2020), pp. 1-6.



