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Introduction

Fine particulate matter (PM2.5) is a major air pollutant that
is associated with adverse health outcomes. Typically PM2.5 is
measured at ground level monitoring stations, however these sta-
tions are globally sparse and provide poor coverage for many ar-
eas that experience high air pollution levels. The National Aero-
nautics and Space Administration (NASA) selected the Multi
Angle Imager for Aerosols (MAIA) proposal in 2016 to improve
this coverage and better understand how respirable particulate
matter (PM2.5) affects human health.[1] The MAIA project
will deploy satellites to collect global 1-km spatial resolution
Aerosol Optical Depth (AOD) data. AOD strongly correlates
with PM2.5, and thus can be used to better understand adverse
health outcomes by employing bias-correcting methods.

Fig. 1: PM2.5 observations on 2018-10-08 at all AQI monitors in the contiguous United

States.

While bias-correcting satellite or numerical model simulations
with ground-level monitoring data is a common task in air qual-
ity modeling, Bayesian uncertainty quantification is not widely
adopted in part due to lack of user-friendly implementations.
Here we present a Bayesian geostatistical regression model frame-
work and corresponding R package (grmbayes) to efficiently es-
timate the relationship between satellite/simulation air quality
data and ground monitor collected PM2.5, and predict PM2.5
at locations for which only satellite/simulation data is available.
This software will provide scientists and practitioners with a user-
friendly tool to employ Bayesian spatio-temporal methods when
incorporating MAIA data in air quality research.

Fig. 2: Histogram of PM2.5 observations across all AQI monitors and days in 2018.

Data

Our data consists of daily PM2.5 observations from 2018 at
973 ground-level air quality monitors in the contiguous United
States.(Figure 1) These data were chosen due to the large
number of major wildfire events, most notably the Camp Fire
in California, which corresponded with high PM2.5 variabil-
ity.(Table 1, Figure 2) While our motivation and exposition as-
sumes regressing on MAIA AOD data, we utilize 12km gridded
Community Multiscale Air Quality (CMAQ) Chemical Trans-
port Model (CTM) simulation data for our examples through-
out this work without loss of generality.[2] MAIA AOD data are
matched to each monitor by date and location (nearest neigh-
bor) for model fitting while full data sets can be used for PM2.5
prediction.

Table 1: Monthly summary statistics of PM2.5 observations across all mon-
itors and days.

Month Mean Median Min Max Sd

Jan 9.3 7.8 0.1 318.8 7.9
Feb 8.2 6.9 0.1 71.5 5.6
Mar 6.6 5.8 0.1 74.0 4.2
Apr 6.9 6.3 0.1 55.1 3.9
May 7.6 7.1 0.1 156.0 3.9
Jun 7.9 7.3 0.1 167.8 4.5
Jul 9.4 8.2 0.1 146.0 6.3
Aug 12.4 10.1 0.1 261.0 11.0
Sep 6.9 6.1 0.1 76.2 4.1
Oct 6.3 5.6 0.1 43.0 3.8
Nov 9.7 6.7 0.1 411.7 14.2
Dec 8.8 7.3 0.1 70.6 6.3

Model

The geostatistical regression model is given by

PM2.5(s, t) = α0(s, t) + α1(s, t)X(s, t) + ϵ(s, t)

where PM2.5(s, t) and X(s, t) are the fine particulate matter
concentration and the aerosol optical depth respectively, at lo-
cation s and time t.[3] The α0(s, t) and α1(s, t) parameters are
the intercept and slope of the regression model composed of the
following spatial and temporal effects:

α0(s, t) = β0(s) + β0(t) + γ0Z0

α1(s, t) = β1(s) + β1(t) + γ1Z1

where βi(s) ∼ NNGP (0, τ2i Ki), βi(t) are modeled as first-
order random walks, and γi are fixed effects for spatial or spatio-
temporal varying covariates Zi. The Ki kernal of the Nearest
Neighbor Gaussian Process (NNGP)[4] is assumed Matérn(νi,
θi), with νi ∈ {12,

3
2,

5
2}, with a pre-specified number of neigh-

bors. Weakly-informative priors are placed on all parameters
and MCMC is employed to sample from the posterior distri-
bution of the model parameters. For computational efficiency,
both NNGP and regular GP are assessed in addition to dis-
cretization of the spatial process range parameter θi.

R Package: grmbayes

We provide an intuitive interface for fitting the geostatistical
regression model with the following features:

• Spatial Process: Select either GP or NNGP (with m number of
neighbors)

• Random Effects: Select either additive or multiplicative random
effects for spatial and/or temporal components.

• θθθ Discretization: Discretize the spatial process range parameter
θi for spatial intercept and/or spatial slope. Choose levels, and
either Gibbs or Metropolis-Hastings updating schemes.

• Cross Validation: Choose number of folds, and cross valida-
tion type (out of ‘ordinary’, ‘spatial’, ‘spatial clustered’ or ‘spatial
buffered’ with a corresponding buffer size).

• Covariance Kernal: Select Matérn(θ, ν) covariance function with
ν ∈ {12,

3
2,

5
2}, or input user-defined covariance kernal.

• Covariates: Include additional regression covariates.

Performance

First we assess the appropriateness of the approximations de-
signed to improve computational efficiency. Setting the number
of neighbors to 10 and discretizing the θ parameters into 20
equally spaced levels across the range of feasible values deter-
mined from a non-discretized test run, we fit the models for all
combinations of NNGP/GP and discretization schemes for 119
monitors within California. All models perform nearly identi-
cally (Table 2), suggesting that the approximations are appro-
priate.

Table 2: California in-sample RMSE for all combinations of spatial process
and θ discretization schemes.

θ Discretization

Spatial Process Gibbs MH None

GP 8.80 8.8 8.8
NNGP 8.81 8.8 8.8

Next we assess the performance of the model on the full con-
tiguous United States data set for the three settings of Matérn
covariance ν ∈ {12,

3
2,

5
2}, utilizing five 10-fold cross-validation

formulations: ordinary, spatial, spatial clustered, and spatial
buffered (with buffer size of 35km and 100km).(Table 3) These
results suggest that ν = 1

2 (exponential covariance kernal) is
most appropriate for these data, and that there is considerable
information gained from the spatial components of the model.

Table 3: Full U.S. RMSE (95% Prediction Interval Coverage Probability)
for all combinations of CV type and Matérn ν parameter values.

Matérn ν Parameter

Cross Validation Type 0.5 1.5 2.5

Ordinary 5.18 (0.97) 5.18 (0.97) 5.18 (0.97)
Spatial 5.61 (0.98) 5.88 (0.98) 5.9 (0.98)

Spatial Buffered (35km) 5.79 (0.98) 6.03 (0.98) 6.02 (0.98)
Spatial Buffered (100km) 6.12 (0.98) 6.16 (0.98) 6.16 (0.98)

Spatial Clustered 6.35 (0.98) 6.43 (0.98) 6.43 (0.98)

Prediction

Predictions are made by kriging the nearest neighbor spatial
effects from the PM2.5 monitor data set for each AOD location,
and combining this with temporal effects. (Figures 4, 3)

Fig. 3: PM2.5 mean posterior predictions by season at all prediction locations in the

contiguous United States.

Fig. 4: PM2.5 predictions on 2018-10-08 at all prediction locations in the contiguous

United States.
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